Flashield's Blog

Just For My Daily Diary

Flashield's Blog

Just For My Daily Diary

Month: February 2024

01.exercise-introduction【练习:介绍】

This notebook is an exercise in the Intermediate Machine Learning course. You can reference the tutorial at this link. As a warm-up, you’ll review some machine learning fundamentals and submit your initial results to a Kaggle competition. 作为热身,您将回顾一些机器学习基础知识并将初步结果提交给 Kaggle 竞赛。 Setup 设置 The questions below will give you feedback on your work. Run the following […]

01.course-introduction【介绍】

Introduction 介绍 Welcome to Kaggle’s Intermediate Machine Learning course! 欢迎来到 Kaggle 的 中级机器学习 课程! If you have some background in machine learning and you’d like to learn how to quickly improve the quality of your models, you’re in the right place! In this course, you will accelerate your machine learning expertise by learning how to: […]

06.exercise-renaming-and-combining【练习:重命名及组合】

This notebook is an exercise in the Pandas course. You can reference the tutorial at this link. Introduction 介绍 Run the following cell to load your data and some utility functions. 运行以下单元格来加载数据和一些实用函数。 import pandas as pd reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) from learntools.core import binder; binder.bind(globals()) from learntools.pandas.renaming_and_combining import * print("Setup complete.") Setup complete. Exercises 练习 […]

06.course-renaming-and-combining【重命名及组合】

Introduction 介绍 Oftentimes data will come to us with column names, index names, or other naming conventions that we are not satisfied with. In that case, you’ll learn how to use pandas functions to change the names of the offending entries to something better. 通常,数据会带有我们不满意的列名、索引名或其他命名约定。 在这种情况下,您将学习如何使用 pandas 函数将有问题的条目的名称更改为更好的名称。 You’ll also explore how to combine data […]

05.exercise-data-types-and-missing-values【练习:数据类型及缺失值】

This notebook is an exercise in the Pandas course. You can reference the tutorial at this link. Introduction 介绍 Run the following cell to load your data and some utility functions. 运行以下单元格来加载数据和一些实用函数。 import pandas as pd reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) from learntools.core import binder; binder.bind(globals()) from learntools.pandas.data_types_and_missing_data import * print("Setup complete.") Setup complete. Exercises 练习 […]

05.course-data-types-and-missing-values【数据类型及缺失值】

Introduction 介绍 In this tutorial, you’ll learn how to investigate data types within a DataFrame or Series. You’ll also learn how to find and replace entries. 在本教程中,您将学习如何研究 DataFrame 或 Series 中的数据类型。 您还将学习如何查找和替换条目。 To start the exercise for this topic, please click here. 要开始本主题的练习,请单击此处。 Dtypes 数据类型 The data type for a column in a DataFrame or […]

04.exercise-grouping-and-sorting【练习:分组与排序】

This notebook is an exercise in the Pandas course. You can reference the tutorial at this link. Introduction 介绍 In these exercises we’ll apply groupwise analysis to our dataset. 在这些练习中,我们将对数据集应用分组分析。 Run the code cell below to load the data before running the exercises. 在运行练习之前,运行下面的代码单元以加载数据。 import pandas as pd reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) pd.set_option("display.max_rows", 5) from […]

04.course-grouping-and-sorting【分组及排序】

Introduction 介绍 Maps allow us to transform data in a DataFrame or Series one value at a time for an entire column. However, often we want to group our data, and then do something specific to the group the data is in. 映射允许我们将 DataFrame 或 Series 中的数据一次转换一整列的值。 但是,我们通常希望对数据进行分组,然后针对数据所在的组执行特定的操作。 As you’ll learn, we do this with […]

03.exercise-summary-functions-and-maps【练习:摘要函数及映射】

This notebook is an exercise in the Pandas course. You can reference the tutorial at this link. Introduction 介绍 Now you are ready to get a deeper understanding of your data. 现在您已准备好更深入地了解您的数据。 Run the following cell to load your data and some utility functions (including code to check your answers). 运行以下单元格来加载您的数据和一些实用函数(包括用于检查答案的代码)。 import pandas as pd […]

03.course-summary-functions-and-maps【摘要函数及映射】

Introduction 介绍 In the last tutorial, we learned how to select relevant data out of a DataFrame or Series. Plucking the right data out of our data representation is critical to getting work done, as we demonstrated in the exercises. 在上一个教程中,我们学习了如何从 DataFrame 或 Series 中选择相关数据。 正如我们在练习中所演示的那样,从数据表示中提取正确的数据对于完成工作至关重要。 However, the data does not always come out of […]

Scroll to top